
Experiments with a Socratic Intelligent Tutoring System for Source Code
Understanding

Zeyad Alshaikh, Lasang Tamang, Vasile Rus
University of Memphis
Memphis. TN 38152

{zlshaikh, ljtamang, vrus}@memphis.edu

Abstract

Computer Science (CS) education is critical in today’s world,
and introductory programming courses are considered ex-
tremely difficult and frustrating, often considered a major
stumbling block for students willing to pursue computer pro-
gramming related careers. In this paper, we describe the de-
sign of Socratic Tutor, an Intelligent Tutoring System that can
help novice programmers to better understand programming
concepts. The system was inspired by the Socratic method
of teaching in which the main goal is to ask a set of guiding
questions about key concepts and major steps or segments of
complete code examples. To evaluate the Socratic Tutor, we
conducted a pilot study with 34 computer science students
and the results are promising in terms of learning gains.

Introduction

Computer Science (CS) education is critical in today’s world
where computing skills such as computer programming are
an integral part of many disciplines including science, math,
engineering, technology, and humanities such as political
science.

Introductory programming courses are considered ex-
tremely difficult for most students (Lane and VanLehn 2004)
and frustrating (Johnson 1990), and often considered a ma-
jor stumbling block (Proulx 2000) for those willing to pur-
sue programming-related careers. As a result, college CS
programs suffer from high attrition rates (30-40%, or even
higher) in introductory CS courses (Beaubouef and Mason
2005).

Research has shown that students in introductory pro-
gramming courses experience many difficulties and often
cannot write a fully functional program without help (Keim,
Fulkerson, and Biermann 1997; Lane and VanLehn 2003).
The root cause of all these difficulties is the inherent com-
plexity of CS concepts, tasks, and the computing environ-
ment (Morrison, Margulieux, and Guzdial 2015). Further-
more, programming cannot be efficiently learned without
considerable practice(Fenichel, Weizenbaum, and Yochel-
son 1970). However, a major problem is the fact that stu-
dents cannot judge their code when it differs from a model

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

answer. Therefore, students often need continued advice and
feedback from experts (Hattori and Ishii 1999).

To overcome these challenges, we developed a dialogue
based intelligent tutoring system (ITS) called Socratic Tutor
(S.T.). S.T. is inspired by the Socratic instructional strategy
which consist of a set of guiding questions meant to pro-
vide students a form of scaffolding targeting key aspects
of a given instructional task. Furthermore, the S.T. relies
on self-explanation theories of learning (Chi et al. 1994) by
implementing instructional strategies such as eliciting self-
explanations through Socratic questioning.

Our working hypothesis is that the S.T. positively impacts
learning, self-efficacy, retention, and helps novice program-
mers achieve deeper understanding of programming con-
cepts.

The rest of the paper is structured as in the following.
First, we discuss background and related work and how the
S.T. stands out among other programming ITS. Next, we dis-
cuss the architecture and design of S.T. in details. Finally,
we illustrate the result of our pilot study in terms of learning
gains and other metrics.

Background and Related Work

Socrates, a Greek philosopher, used a series of questions to
guide students in their process of examining a target topic
or concept. Socrates believed that these guiding dialogues
would help his disciples, i.e., the learners, better understand
a given topic, identify the incomplete understanding of key
concepts, clarify any misunderstandings and correct miscon-
ceptions, therefore developing a deeper understanding of the
target topic through some sort of guided self-discovery pro-
cess with minimal help from the instructor/tutor. The So-
cratic method relies on a so-called direct line of reasoning
(Chang et al. 2003) that emphasizes directing students’ at-
tention to key parts of a learning task thus triggering rea-
soning and explanation processes in students’ minds which
have been proven to be extremely beneficial in deep under-
standing tasks such as the ones we use in our case, i.e., un-
derstanding programming examples. Consequently, the So-
cratic tutoring method has been adapted by human tutors as
well as computer tutors as early as 1977 (see Stevens and
Collins’ WHY system (Stevens and Collins 1977)).



Exploring the literature, one can find many ITSs for
computer programming such as FIT Java Tutor(Gross and
Pinkwart 2015), CIMEL ITS (Blank et al. 2005) and JITS
(Sykes and Franek 2003). However, we focus on dialogue-
based ITSs of which we mention the following previously
developed systemss: Duke Programming Tutor (Keim, Fulk-
erson, and Biermann 1997), ProPL (Lane and VanLehn
2003), GENIUS (McCalla and Murtagh 1985) and PEA
(Moore and Moore 1995). In the next paragraphs, we dis-
cuss each system and indicate how our S.T. system stands
out relative to these prior efforts.

Duke Programming Tutor (DPT) is a multi-modal dia-
logue system that guides students through a standard pro-
gramming lab to help them construct simple programs. The
system uses a semantic network with a feature vector to
model the domain and uses a temperature function to steer
the dialogue. The DPT takes students’ input and uses a sim-
plistic minimum edit distance between their code and the
goal program. Therefore, DPT is a task-oriented dialogue
that leads students to achieve a set of goals, and as a result,
write a simple Pascal program. In our case, we do not focus
on constructing programs but rather on understanding com-
puter programs.

The second ITS example is PROgram PLanner (PROPL)
which focuses on programming design and problem solv-
ing. PROPL uses Coached Program Planning (CPP) (Lane
and VanLehn 2003) as its tutoring strategy which consists of
eliciting problem decomposition from students. Therefore,
the tutor gives students a problem and asks them to iden-
tify the following elements: (1) goal(s), which are the objec-
tives declared by the main program, (2) schema, which is the
method to accomplish the goal(s), and (3) objects, which are
the data that is required by the program. The final product
from the interaction is a pseudocode that can be translated
into a program.

The goal of both DPT and PROPL is to help students
solve programming tasks and generate the corresponding
code (pseudo or otherwise), that is, the emphasis is on plan-
ning and designing phases. Furthermore, these systems are
task-oriented and are focused on guiding students toward fi-
nal goal.

The two other example systems, GENIUS and PEA, can
be viewed as helping systems. GENIUS interacts with the
students in order to help them fix syntactic errors. The inter-
action involves keeping the student engaged in a dialogue,
guiding them to identify the errors on their own. The in-
teraction is limited to yes/no questions and “I don’t know”
responses. Finally, the PEA system helps students improve
their coding style by providing advice on how to make a
program more readable and maintainable. The PEA system
is able to answer questions the student may have regarding
suggested changes in code. It should be noted that in our
case we do not provide code examples that have errors as
this could be potentially frustrating for novices, i.e., students
in CS1 and CS2. We do plan to add debugging tasks in the
future but for that we need a more fine-grained learner model
that will help us decide for which students such debugging
tasks are appropriate.

Unlike these other ITSs, our S.T. is able to engage stu-

dents in an active dialogue, automatically assess their re-
sponses and thereofore knowledge and also clarify any mis-
conceptions. These are major features based on which the
S.T. computer tutor is different the other ITSs targeting com-
puter programming related learning tasks.

Socratic Tutor for Programming

As already pointed out earlier, S.T. is a web-based dialogue
ITS that can help novice programmers better understand
programming concepts. S.T is programming language in-
dependent and can be used to teach any programming lan-
guage.

The architecture of the S.T. consists of a student model, a
domain model, an interaction model, and a dialogue and nat-
ural language understanding (NLU) engine (Banjade et al.
2015). The student model contains student’s level of mastery
with respect to the target topic and the domain model con-
sists of a list of topics to be covered and in what order. The
interaction model is defined by the dialogue policy which
selects at each moment in the dialogue what the next S.T. di-
alogue move should be. The policy is modulated by the out-
put of the NLU engine which is basically a similarity engine
comparing the student response to an ideal response. The
dialogue policy can be customized for each tutoring session.

The interface of the S.T consists of three main area: (1)
a code area, where the source code example is shown, (2) a
dialogue area, where the dialogue history is shown, and (3)
a student response area which is where students type their
input which could be greetings, answers to tutor’s questions
or their ask their own questions.

The main type of instructional tasks is source code under-
standing and output prediction. Therefore, the S.T shows a
code example and asks the learner to explain the code and
predict its output. Then, the S.T guides the student through
dialogue, e.g., by asking questions, to focus on the major
programming concepts and steps in each code example. The
set of questions were manually designed by experts follow-
ing the Socratic method’s guidelines. Furthermore, a major
goal of the S.T. system is to evaluate the students’ knowl-
edge and detect any misconceptions as mentioned previ-
ously.

The S.T system provides support to learners in the form
of hints in two major instances: (1) when a student asks ex-
plicitly for help or (2) when the answer is incomplete or in-
correct. In both cases, the S.T starts a 3-level feedback loop.

At the first level, the tutor briefly explains the program-
ming concept and asks the student to try to answer the orig-
inal question. If the student fails, the tutor provides a hint
in the form of a fill in the blank question. This type of hint
limits the student’s answers and draws more attention toward
the key part of the solution. If both levels 1 and 2 hints fail to
elicit a correct response from the learner, then the S.T. tutor
provides level-3 feedback in the form of a multiple-choice
question. Finally, if the student cannot give the correct an-
swer, the system will present the solution and move to the
next question.

It should be noted that if the learner provides a correct an-
swer, then the system gives positive feedback such as “Well



Figure 1: Socratic Tutor interface

done!” and ”Great Job!” to promote engagement and con-
firm to the learner that they answered correctly the corre-
sponding question.

Experimental Setup

We evaluated the effectiveness of the S.T by conducting a pi-
lot study with 34 students attending introductory courses in
Computer Science at an urban university in southeast Asia.
The study tried to answer following research questions.

• RQ1: How much do students learn if using S.T.?

• RQ2: Do students with lower prior knowledge learn
more?

• RQ3: How does self-efficacy affect students’ learning
processes?

Materials

Participants were asked to fill a background questionnaire
and a self-efficacy survey at the beginning of the experiment.
The self-efficacy survey contained 11 questions related to
each programming concept subjects will encounter during
the tutoring session. Then, the participants were assigned a
pre- and post-test. The pre and post-test have similar level of
difficulty and contains 9 JAVA programs. The participants
have to predict the output of each program.

Procedure

The experiment was conducted in a computer lab under the
supervision of experimenters. First, participants were de-
briefed about the purpose of the experiment and asked to
read and sign a consent form if they agreed to proceed.
Then, they took a background questionnaire, self-efficacy
survey, and a pre-test. Once they have finished all these ini-
tial assessments, an approximately 60-minute tutoring ses-
sion with the S.T. started in which they worked on 9 Java
code examples. Finally, they took a post-test which has a
similar format and difficulty level as the pre-test.

Table 1: Pre and post-test scores: mean, standard deviation,
improvement, and learning gain

pre-test post-test
Section n Mean SD Mean SD Improvement Learning gain

All 34 75.82 11.6 88.4 9.71 12.58 52.03
TOP 17 83.99 7.58 91.83 7.89 7.84 48.97

BOTTOM 17 67.65 8.84 84.97 10.35 17.32 53,54

* Improvement = post-test - pertest.

Table 2: Self-efficacy: mean, standard deviation, improve-
ment, and learning gain

Self-efficacy
Section n Mean SD Improvement Learning

TOP 17 80.77 11.72 15.81 53.85
BOTTOM 17 42.38 11.08 14.10 51.01

Assessment

Each question in the pre and post-test were scored with 1
when the answer provided by the student was correct and 0
otherwise. Based on this rubric and the student responses,
we computed a learning gain (LG) score as follows (Marx
and Cummings 2007).

• If post-test >pre-test, gain = (post-test - pre-test)/(100 -
pre-test)

• If post-test <pre-test, gain = (post-test - pre-test)/pre-test

• If post-test=pre-test= 0 or 100, drop the cases

• If post-test=pre-test, gain = 0

Results

Learning Gains To understand the overall effectiveness
of S.T, we report a improvement metric and LGs. Table
1 shows that participants had an average pre-test score of
75.82% and an average post-test score of 88.4%. The aver-
age improvement is 12.58% (p < 0.01) and the LG score is
52.03%. Thus, the overall increase in knowledge is promis-
ing, validating the effectiveness of the implemented pro-
posed Socratic strategy.

To answer the second research question, RQ2, we divided
the participants into two groups (TOP vs. BOTTOM) based
on the mean pre-test score. The TOP group had an aver-
age pre-test score of 83.99% and average post-test score
of 91.83% resulting in a 7.84% improvement and 48.97%
LG. On the other hand, the BOTTOM group had an aver-
age pre-test score of 67.65% and an average post-test score
of 84.97% resulting in 17.32% improvement and 53% LG.
Therefore, participants with lower prior knowledge learn
more with a difference of 9.94% in improvement and 4.57%
in LG (p <0.01).

Self-efficacy: To answer RQ3 we divided the participants
again into TOP and BOTTOM groups based on the mean
score of the self-efficacy survey responses. The results in
table 2 show participants with higher self-efficacy scores
have an increase of 1.71% in improvement and 2.84% in
LG. However, the p-value (p > 0.05) but the increase is not
statistically significant.



Table 3: 3-level Feedback

Level Type Helpful Not helpful

1 Concept explanation 62.02% 37.98%
2 Fill in the Blank 76.47% 23.53%
3 Multiple choice 69.05% 30.95%

*Helpful means the student correctly answer the question after receiving the
feedback

Feedback: To evaluate the effectiveness of our 3-level
feedback approach, we analyze students responses for each
level. Table 3 shows that 62.02% of the students who re-
ceived level-1 feedback were able to give the correct answer.
The percentage increased by 14.45% in level-2 feedback and
by 7.03% in level-3 feedback.

Conclusions and Future Work

Promoting deep understanding of programming concepts is
the primary focus of our Socratic ITS. The S.T. tutor is a
dialogue based ITS that incorporates a Socratic line of ques-
tioning to steer and guide learner’s attention to the important
parts of a target code example. The S.T system is program-
ming language independent, therefore can be used to tutor
any programming language.

S.T is part of our larger agenda of investigating the role of
Socratic instructional strategy for source code comprehen-
sion and computer programming learning. We are planning
to carry out a controlled experiment to compare the Socratic
strategy with other known strategies.

Acknowledgments

This work as partially funded by the National Science Foun-
dation under the award #1822816 (Collaborative Research:
CSEdPad: Investigating and Scaffolding Students’ Mental
Models during Computer Programming Tasks to Improve
Learning, Engagement, and Retention) to Dr. Vasile Rus. All
opinions stated or implied are solely the authors’ and do not
reflect the opinions of the funding agency.

References

Banjade, R.; Niraula, N. B.; Maharjan, N.; Rus, V.; Ste-
fanescu, D.; Lintean, M.; and Gautam, D. 2015. Nerosim: A
system for measuring and interpreting semantic textual sim-
ilarity. In Proceedings of the 9th international workshop on
semantic evaluation (SemEval 2015), 164–171.

Beaubouef, T., and Mason, J. 2005. Why the high attri-
tion rate for computer science students: some thoughts and
observations. ACM SIGCSE Bulletin 37(2):103–106.

Blank, G.; Parvez, S.; Wei, F.; and Moritz, S. 2005. A
web-based its for oo design. In Proceedings of Workshop
on Adaptive Systems for Web-based Education at 12th Inter-
national Conference on Artificial Intelligence in Education
(AIED’2005). Amsterdam, the Netherland, 59–64. Citeseer.

Chang, K.-E.; Sung, Y.-T.; Wang, K.-Y.; and Dai, C.-Y.
2003. Web/spl i. bar/soc: a socratic-dialectic-based collabo-
rative tutoring system on the world wide web. IEEE Trans-
actions on Education 46(1):69–78.

Chi, M. T.; De Leeuw, N.; Chiu, M.-H.; and LaVancher, C.
1994. Eliciting self-explanations improves understanding.
Cognitive science 18(3):439–477.

Fenichel, R. R.; Weizenbaum, J.; and Yochelson, J. C. 1970.
A program to teach programming. Communications of the
ACM 13(3):141–146.

Gross, S., and Pinkwart, N. 2015. Towards an integrative
learning environment for java programming. In 2015 IEEE
15th International Conference on Advanced Learning Tech-
nologies, 24–28. IEEE.

Hattori, N., and Ishii, N. 1999. An extended educational
system for programming and its evaluation. Information and
Software Technology 41(8):525–532.

Johnson, W. L. 1990. Understanding and debugging novice
programs. Artificial intelligence 42(1):51–97.

Keim, G.; Fulkerson, M.; and Biermann, A. 1997. Initiative
in tutorial dialogue systems. In Proceedings of the American
Association for Artificial Intelligence (AAAI) Spring Sympo-
sium on Computational Models for Mixed-Initiative Interac-
tion.

Lane, H. C., and VanLehn, K. 2003. Coached program plan-
ning: dialogue-based support for novice program design. In
ACM SIGCSE Bulletin, volume 35(1), 148–152. ACM.

Lane, H. C., and VanLehn, K. 2004. A dialogue-based tu-
toring system for beginning programming. In FLAIRS Con-
ference, 449–454.

Marx, J. D., and Cummings, K. 2007. Normalized change.
American Journal of Physics 75(1):87–91.

McCalla, G., and Murtagh, K. 1985. GENIUS: An experi-
ment in ignorance-based automated program advising. Uni-
versity of Saskatchewan, Department of Computational Sci-
ence.

Moore, J. D., and Moore, J. D. 1995. Participating in ex-
planatory dialogues: interpreting and responding to ques-
tions in context. MIT press Cambridge, MA.

Morrison, B. B.; Margulieux, L. E.; and Guzdial, M. 2015.
Subgoals, context, and worked examples in learning com-
puting problem solving. In Proceedings of the eleventh an-
nual international conference on international computing
education research, 21–29. ACM.

Proulx, V. K. 2000. Programming patterns and design pat-
terns in the introductory computer science course. In ACM
SIGCSE Bulletin, volume 32(1), 80–84. ACM.

Stevens, A. L., and Collins, A. 1977. The goal structure of a
socratic tutor. In Proceedings of the 1977 annual conference,
256–263. ACM.

Sykes, E. R., and Franek, F. 2003. A prototype for an intelli-
gent tutoring system for students learning to program in java
(tm). In Proceedings of the IASTED International Confer-
ence on Computers and Advanced Technology in Education,
78–83.


